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a reference distance

the modulus of elasticity of the shell and the reference
modulus of elasticity respectively

the rise of the spherical cap; the distance from the
boundary to the pole measured along the axis of
revolution (see Fig. 3)

the thickness of the shell and the reference thickness
respectively

the square matrix associated with the linear terms in
the nth set of equilibrium equations

the square matrix associated with the nonlinear terms in
the Nth set of equilibrium equations

the rise of the truncated hemisphere; the distance from
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of revolution (see Fig. 15)

the meridional bending moment per unit length
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trigonometric expansion of the dependent variables
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a nondimensional axial load

the membrane force per unit length

an applied load in pounds

a nondimensional applied load

the axisymmetric applied axial load (see Fig. 15)

the axisymmetric applied pressure at a point on the
shell

the classical buckling pressure of a complete sphere

. th . . .
the coefficient of the N term in the trigonometric
expansion of the applied pressure

a column matrix containing the coefficients of the nth

term in the series expansion of the applied load
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a column matrix containing all of the nonlinear terms in
the nth set of equilibrium equations; the pseudo loads

a transverse force per unit length
the total applied pressure load at a point on the shell

the normal distance of any point on the reference surface
from the axis of revolution (see Fig. 3)

the normal distance from the axis of revolution to the
last point of applied pressure (see Fig. 3)

the radii of curvature in the s and e directions respectively
the meridional distance along a reference surface
the total meridional distance of the reference surface
the displacements in the s, e and { directions respectively
3 . . . . th
the displacement in the { direction in the n mode

. . . . th
a column matrix containing the coefficients of the n term
in the series expansion of the unknowns U, V, W and MS

the linear and nonlinear parts respectively of {Z(N?}

the nondimensional parameter governing the maximum
magnitude of the applied asymmetric axial load

the nondimensional parameter governing the maximum
magnitude of the applied asymmetric pressure

the normal to the reference surface

the circumferential angle measured about the axis of
revolution

a nondimensional geometric parameter used to describe the
spherical cap

a nondimensional loading parameter describing the area of
loading on the spherical cap

Poisson's ratio
a reference stress

the included angle of the truncated hemisphere measured
from the equator to the final edge (see Fig. 15)

the rotation of the meridian



I. INTRODUCTION

There are in existence several user-oriented digital computer pro-
grams for the static analysis of shells of revolution. A detailed
discussion of most of these programs is given in Ref. 1. Of particular
interest here is the program developed by Ball [Ref. 2] for the geo-
metrically nonlinear analysis of arbitrarily loaded shells of revolution.
This program is an equilibrium program; that is, it solves for the dis-
placement and stress resultant fields for an arbitrary loading condition.
Since geometric nonlinearities are included, the magnitude of load that
leads to a condition of instability can be determined.

The utility of the program would be considerably enhanced if it
could be used to determine bifurcation buckling loads and the behavior
of the shell in the vicinity of the bifurcation load. This latter
feature is often referred to as the imperfection sensitivity of the
shell to the load. As a consequence, the objective of this study was
to use the computer program to examine the buckling behavior of several
shells subjected to axisymmetric and nearly axisymmetric loads. It was
anticipated that an examination of the effects of the small asymmetric
perturbations upon the stability of the shell would disclose the bi-
furcation buckling load and provide a quantitative evaluation of the

imperfection sensitivity of the shell to the load.



II. DESCRIPTION OF THE COMPUTER PROGRAM

The computer program used in this study is a modified version of the
program described in Ref. 2. The program is capable of analyzing thin,
linearly elastic shells of revolution subjected to arbitrary loads and
temperature distributions. It solves Sanders' nonlinear field equations

for the conditions of small strains and moderately small rotations.

A. COORDINATE SYSTEM

The coordinate system used to locate points within the shell is s,
e and {, where s is the meridional distance along a reference surface,
C is the normal to the surface and e is the circumferential angle

measured about the axis of revolution.

B. METHOD OF SOLUTION

The governing partial differential equations are reduced to four
second order ordinary differential equations by expanding all dependent
variables in trigonometric series in the e direction. Each of the non-
linear terms, which are products of series, is further expanded into a
single series. The coefficients of like trigonometric arguments are
then grouped to form coupled sets of ordinary differential equations.
The sets of differential equations are uncoupled by treating the non-
linear terms as known quantitiés or pseudo loads. A finite difference
formulation is employed for the meridional derivatives of the variables.

This leads to sets of algebraic equations of the form

[x® ] {z™} = (™} + o (1



The square matrix [Kin)] is a banded matrix associated with the linear
portion of the governing equations. The unknown variables in the column
matrix {Z(n)} are the coefficients of the nth term in the series expan-
sions of U, V, W and Ms at each finite difference station. The variables
U, V and W are the displacements in the s, e and { directions respectively,
and MS is the meridional bending moment per unit length. The applied loads
in the nth mode are contained in the column matrix {é(n)}’ and the column
matrix {qéi)} contains all of the nonlinear terms. There is one such
matrix equation for every value of n used in the trigonometric expansions
of the dependent variables.

An elimination procedure is used to solve each set of equations for
the actual loads plus an estimate of the pseudo loads. The nonlinear
terms are then recalculated, using the new solution, and entered as
revised pseudo loads. All of the sets of equations are then solved
again, and this procedure is repeated until two consecutive solutions in
each mode differ by less than a specified amount. This method of solution
is referred to as the Jacobi method.

A load-displacement history is obtained by incrementing the applied
loads in equal load steps until the number of iterations required to
achieve convergence in any mode exceeds a prescribed limit. The load
increment is then reduced by a factor of five, and the procedure con-
tinues until a prescribed number of load steps or a prescribed number
of load step reductions have been made.

Since the method of solution is based on a nonlinear pseudo load
approach, the shell reacts equally, in a linear fashion, to any change
in either the applied load or the pseudo load. Thus, failure of the
solution to converge in any mode can be attributed to two types of non-

linear behavior. Both types are illustrated in Fig. 1. The existence

3



of a maximum or an inflection point on the softening load-deflection
curve A represents a type of behavior for which a solution can be
obtained only below the point of zero or nearly zero slope. On the
other hand, the existence of a stiffening nonlinearity, as illustrated
by curve B of Fig. 1, can also cause a convergence failure whenever the
slope becomes too steep. Thus, in general, it is necessary to examine
the load-displacement behavior of the shell in order to determine the

cause of the convergence failure.

C. MODIFIED PROGRAM

The program used in this study was a modified version containing
revisions made by personnel at the NASA Langley Research Center and by
the original author. The main difference between the modified program
and the version given in Ref. 2 is the manner in which core storage is
allocated for the solution vector. The solution vector was changed from
a three dimensional array to a two dimensional array, allowing any com-
bination of meridional and circumferential unknowns to be specified.
The product of the number of meridional stations and the number of terms
in the trigonometric expansions must be less than 201, and the maximum
number of terms in the trigonometric expansions must be less than 11.

The difference in storage allocation necessitated changes in the
method of handling the geometry, the inplane and bending stiffnesses,
and the loads. The subroutine STIF was replaced by the subroutine BDB;
subroutine PTLOAD was replaced by two subroutines, PLOAD and TLOAD; and
subroutine ACOEF was eliminated. 1In addition, two subroutines, HJ and
EFG, given in Ref. 3, were substituted for the original subroutines HJ

and EFG.
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An additional change has been made in the test for convergence.
Convergence was set such that the difference in two successive modal
solutions, at every station, must be less than the convergence criterion
times the maximqm solution in that mode, provided the maximum solution
is greater than 10-6. The test for convergence is not required when the
maximum solution is less than 10-6. This change was made to provide
converged, accurate solutions in fewer iterations.

Finally, the subroutine OUTPUT has been modified in order to present
the data in more compact form; the COMMON and DIMENSION statements have
been changed to allow the compilation of the program in any order; and
several "bugs" were detected and eliminated.

The modified program occupies approximately 146,000 bytes or about

36,500 words on the IBM 360/67.

D. PROGRAM INPUTS

The user-prepared subroutines BDB, GEOM and PLOAD, describing the
shell stiffness, geometry and applied loads, for the shells covered in
this study are given in Appendix A. The important parameters that can
be varied for a given shell geometry are; number of points, number of
modes required in the solution, number of modes used to describe the
load, boundary conditions, loading condition, convergence criterion,

load step size, number of load step reductions and number of iterationms.



IITI. APPLICATIONS

The program was used to solve for the response of several shells
subjected to axisymmetric and nearly axisymmetric loads. Figure 2
presents three load-displacement curves that are typical of the types
of axisymmetric behavior predicted by the program for a shell that is

imperfection sensitive.

A, SNAP BUCKLING

Axisymmetric snap buckling is illustrated by curve E of Fig. 2, and
the application of the program to determine the snap buckling load is
fairly straight forward. The program, as previously discussed, will not
be able to find a converged solution in the vicinity of the snap buckling

load.

B. BIFURCATION BUCKLING

The program, as currently formulated, cannot be used to solve the
classical eigenvalue problem for the bifurcation load of an axisym-
metrically loaded shell. However, it is possible to introduce a small
asymmetry in the load and to determine the unsymmetric buckling behavior
for the nearly axisymmetric load. 1In the limit, as the asymmetry of the
load approaches zero, the asymmetric buckling load should approach the
bifurcation load. This conclusion is based upon the following two mode
analysis.

Consider that the applied load consists of an axisymmetric part
{q(o)} and a very small asymmetric part {q(N)}. It can be shown that
due to the load and modal coupling there will be displacements in the

modes O, N, 2N, 4N, 6N, etc.. For this analysis only the two lowest modes
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are considered to be significant. According to equation (1), the

matrix equations for these two modes are

[Kﬁo)] {Z(O)} = {q(o)} + {qé? (2a)

[P ] {29} = {2} + {2} (25)

As a result of modal coupling {ﬁég)} and {éég)} are functions of both
{Z(o)} and {Z(N?}. The behavior of the axisymmetric mode is illustrated
by curve F in Fig. 2. Note that the difference between curve E and
curve F is due to the presence of {Z(N)} in the nonlinear terms of
equation (2a). Point P on curve F represents the maximum load for

which a converged solution of equation (2b) can be obtained.

The nonlinear terms in equation (2b) can be given in the form

fr} - 0] {2} @)

where [Kéz)] is a function of {Z(O)} only. The solution vector {Z(N)}

can be separated into a linear part {ZiN)} and a nonlinear part {Zég)

such that
2™} = {20 42D (4a)
where {Z£N)} is defined by

() ™y )
[xP] {z} - {7} (4b)
Substituting equations (3), (4a) and (4b) into equation (2b) leads to

[KiN)] {Zﬁ) = [Kém {ZﬁN) + Zg) (5a)

20

When {q(N)} is approximately zero, { L

} is very small.



If
{z(N)} > > {z(N)} (5b)

then equation (5a) becomes

[KEN)] {Z(N)} [Ké ]{Z(N) (5¢)

Equation (5¢) is an approximation to the formulation of an eigenvalue
problem and the displacements contained in {Zéz)} define the buckling
mode shape. The magnitude of {Zéi) .is negligible until the applied

load approaches the value at point P in Fig. 2. Thus, when {ZﬁN)} is
negligible, curve F will nearly coincide with curve E and P will approach
P', the bifurcation point.

In some instances, a linear solution for the axisymmetric mode is
desirable. This is usually referred to as a linear prebuckling analysis.
For this condition {Z(o)} is a linear function of the applied load, and
thus [Kéz)], which is a function of {?(0)} only, is also a linear function
of the applied load. Therefore, equation (5c) becomes an approximation
to a linear eigenvalue problem. Curve C in Fig. 2 illustrates a typical
linear axisymmetric behavior with the bifurcation point denoted by point
P''. Several changes had to be made to the program in order to obtain a
linear solution in the axisymmetric mode and a nonlinear asymmetric

solution. These changes are presented in Appendix B.

C. IMPERFECTION SENSITIVITY
An imperfection sensitive shell is one for which the buckling load

L . 1
is reduced due to the presence of asymmetric imperfections™ . Therefore,

1The sensitivity of a shell is a function of the loading condition.
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curve F of Fig. 2 is a typical illustration of an imperfection
sensitive shell since P falls below P'. For a shell that is insensi-
tive to imperfections, P is above P'.

In a two mode analysis, the presence of the asymmetric response will
have some influence on the response of the axisymmetric mode since it
appears in {ﬁ;g)} . The axisymmetric mode will affect the response in
the asymmetric mode through [Kéi)ﬂ. Thus, the sensitivity of a given
shell and loading condition must be examined in two parts;

(1) the nature of the effect of {Z(N)} on {Z(O)}

(2) The nature of the effect of {Z(o)} on {Z(N)}
As a consequence of this interaction, the program cannot be used to
determine imperfection sensitivity when a linear axisymmetric solution
is employed since item (l) is eliminated.

Application of the program to determine the sensitivity of a shell
is limited to the extent that the asymmetric imperfections can only be
introduced by applying an asymmetric load. Thus, the imperfections are
not stress free as is usually assumed; nevertheless, if the asymmetric

load is small the associated stresses will be small.

D. SELECTION OF SHELL GEOMETRY

In order to establish the ability of the program to determine
bifurcation loads and the sensitivity of the shell to these loads, the
results from the program must be compared with previously published
analytical and experimental data. Thus, the spherical cap was selected
as one shell geometry to investigate since numerous results, both
theoretical and experimental, are available for a wide variety of
loading conditions. Furthermore, previous investigations indicate

that the spherical cap exhibits all of the traits desired; that is,

11



the symmetric behaviof is a snap buckling phenomenon, bifurcatio&
loads exist, for various size caps, below the symmetric snap load, and
the shell is sensitive to imperfections over a wide range of loading
conditions.

Another type of spherical shell was selected for which new results
were obtained. This was the truncated hemisphere under axial tension.
The experimental results that are available for this shell do not agree
with the theoretical results. Imperfection sensitivity was suspected to

be the cause of the discrepancy.

12



IV. SPHERICAL CAP DESCRIPTION AND RESULTS

A, GEOMETRY
The geometry of the spherical cap is shown in Fig. 3 and can be

specified by a nondimensional geometric parameter A, where
2..1/4 1/2
x =2 314 @yt (6)

and H is the rise of the cap, h is the thickness and v is Poisson's

ratio. For all shells considered:

Radii of curvature, Rs’ R° = 250 in
Thickness, h = .25 in
Modulus of elasticity, E = 30x106 psi
Poisson's ratio, v = .3

B. LOAD DESCRIPTION

The classical buckling pressure of a complete sphere is

2E
4, = T;_\)T_)— (h/RS)2 ™)
1. Axisymmetric
A uniform load q was applied to the shell from the pole out to
T as shown in Fig. 3.
A nondimensional load parameter A was used to describe the area
of loading, where

/ /2

% = 121" @myarm’ ©)

If the approximation H = ro/2RS is substituted into equation (6), then

equation (8) can be expressed as

X = (9)

HIHI
(o]
>

13
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For a small finite area load, approximating a point load, a

dimensionless load parameter P¥* was used, where

PRs
Eh
and
-2
P=mr q : (11)

where T is equal to the distance between the pole and the first finite

difference station.

2. Asymmetric

An asymmetric load was defined in one mode as
N
e = q (12)
where ¢ is a very small number. Thus, the nearly axisymmetric load

is given by

ap = a1 + ¢ cos(Ne)] (13)

C. BOUNDARY CONDITIONS

The first station was at the pole and was handled internally within

the program. The final edge was clamped and the boundary conditions are
U=V=W=3% =0 (14)

where @S is the rotation of the meridian.

D. PROCEDURES

The axisymmetric and asymmetric behavior of the spherical cap was
determined for both uniform pressure and partial uniform loading for
several values of A. 1In the majority of cases, forty stations were used
along the meridian. The exception to this was the investigation of the

axisymmetric snap buckling due to a uniform pressure., For 10 < A < 16,

15



80 stations were used; and for A > 16, 100 stations were used. A
stringent convergence criterion of .002 was used in all cases.

1. Uniform Pressure

For uniform pressure, A = A. The symmetric behavior was examined
first in order to establish the axisymmetric snap buckling pressures over
a wide range of A. One value of A was then selected for full examination
of the behavior under asymmetric load. The effect of varying ¢ over a
wide range was examined and the degree of sensitivity estimated. A
value of ¢ was selected for use in subsequent analysis of the bifurcation
pressures. The final loads approximating the minimum bifurcation pres-
sures were obtained for various values of A.

2. Partial Uniform Loading

An investigation was made for the minimum value of )\, approxi-
mating a point load, over a wide range of A. The final loads were then
obtained for axisymmetric snap buckling at various values of X for one
value of A. Once the symmetric behavior had been obtained, very small
asymmetric loads were introduced and an approximation obtained for the
bifurcation loads as a function of A at one value of A. For small values

of A, a linear symmetric solution was used.

E. RESULTS

1. Uniform Pressure

a. Axisymmetric Snap Buckling
The load-displacement curve at the 24th station for A=8 is
shown in Fig. 4. The transverse displacement at station 24 was the
maximum displacement, and the nonlinear effects at this station were
representative of the overall behavior. The load-displacement curve

indicates the existence of a nearly zero slope which is indicative of

16
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snép buckling. Consequently, the final load is considered to be the
critical pressure for axisymmetric snap buckling under a uniform
pressure for A=8.

Figure 5 shows the final loads obtained for several values
of A. The results of Weinitschke [Ref. 4] and Huang [Ref. 5] are also
presented in Fig. 5.

b. Bifurcation Buckling

The effect of the nearly axisymmetric load given by equation
(13) for N=4 was obtained for A=8. According to Refs. 4 and 5, mode four
is the critical mode number for this case. Figure 6 shows the final load
as a function of ¢. Note that as ¢ approaches zero, the final load
asymptotically approaches a limiting value. Figure 7 shows the dis-
placement in mode four at station 24 versus the load for ¢ = .0005. The
curve strongly indicates a region of zero slope at the final load and
convergence failure is attributed to the asymmetric behavior. Further-
more, the nonlinear effects are definitely limited to a narrow load
range near the final load. The ratio of nonlinear to linear displace-
ments2 at the final load were found to be of the order of 100 to 1, and
the linear displacements were negligible. Thus, all of the requirements
for a bifurcation analysis given in Section III.B. are satisfied, and
the final load for ¢ = .0005 is considered to be a close approximation
to the bifurcation load. Figure 8 is a plot of the normalized, non-
linear modal displacements versus the nondimensional, normal distance
from the axis and is the buckling mode shape. Also shown in Fig. 8 is

the buckling mode shape obtained by Huang for A=9.

2The final linear displacements were computed using the initial solution
at the first load step.

18
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When the critical mode number is unknown, the number of
computer runs necessary to determine the critical mode number and the
bifurcation load can be reduced by introducing additional modes in the
solution. For example, for A=8, an asymmetric load was introduced in
mode one, with ¢ = .05, and a solution was obtained in modes zero, one,
two, three and four. Figure 9 shows the resultant asymmetric modal
displacements at station 24 as a percentage of the total displacement
versus the load. Note that the same softening characteristic present
in Fig. 7 exists for modes three and four3. The failure of the solution
to converge can be attributed to either mode three or four, since a zero
slope is indicated by both. The final load is within 5% of the value
obtained using a two mode solution. Thus, Fig, 9 illustrates the ability
of a miltimode analysis to obtain a first cut approximation to the bi~
furcation load and critical mode.

Results were obtained for approximate bifurcation loads at
several other values of A by selecting the critical modes as given in
Ref. 5 and using a two mode solution with ¢ = .0002, Figure 10 gives
the final loads and critical mode numbers versus A. Also shown in Fig.
10 are the bifurcation loads obtained by Huang.

c. Imperfection Sensitivity

As discussed in Section III.C., an imperfection sensitive
shell is one for which the buckling load is reduced due to the presence
of asymmetric imperfections. Figure 11 presents the load-~displacement
curves for the axisymmetric mode at station 24 for A=8 and several

values of ¢. Note that as ¢ is increased the final load is decreased.

3According to Refs. 4 and 5, the bifurcation load for mode three is only
slightly higher than that for mode four when A=8.
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Thus, this shell appears to be imperfection sensitive for the uniform
pressure loading condition. Fitch and Budiansky [Ref. 6] have con-
ducted a study of the buckling and postbuckling behavior of spherical
caps, subjected to centrally distributed pressure, based on Koiter's
initial postbuckling theory. They found the shell A=8 to be imper-
fection sensitive to the uniform pressure. They also predicted the
initial slope of the bifurcation branch of the equilibrium path on a
load-displacement plot. The predicted slope for the shell A=8,
subjected to uniform pressure, is given in Fig. 114.

2. Partial Area Loading

a. Axisymmetric Snap Buckling

The final loads obtained for the axisymmetric behavior of the
spherical cap under a small finite area load, approximating a point load
at the pole, are shown in Fig. 12. Experimental results given by Penning
and Thurston [Ref., 7] and Penning {[Ref. 8] for axisymmetric snap buckling
due to a small finite area load are also presented in Fig. 12. The
experimental load-displacement curves for A > 15 show a well-defined,
abrupt discontinuity in the displacement at the pole, and the slope of
the curve after the snap is somewhat less than the initial slope. Below
a value of A=15, the experimental results show no axisymmetric snaps, but

a large majority of the load-displacement curves show significant decreases

4The load-displacement plot used by Fitch and Budiansky is based on an
average deflection parameter. The load-displacement plot shown in

Fig. 11 is based on the maximum displacement. The assumption is made

that the rate of change of the average deflection parameter is essentially
the same as the rate of change of the maximum displacement.

5Three atypical shells with poor radial geometry did buckle at loads some-
what below P*#=2.0, [Ref. 81].
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in slope in the vicinity of P*=2.0. Figure 13 shows the theoretical
load-displacement curve for A=12, and a reasonably accurate reproduction
of the experimental results given in Ref. 8 for A=12,56 and a small
finite area load. Note that although the solution failed to converge
for P* > 2.27 snap buckling apparently is not imminent since the experi-
mental results indicate that no snap occurs at this value of load, and
the theoretical load-displacement curve does not show the significant
decrease in slope that appears in Figs. 4 and 7 for the pressure loaded
cap.

The results given in Fig. 12 indicate that snap buckling or a
significant decrease in the slope occurs at approximately the same value of
load for all values of A considered. There appears to be a reasonable
explanation for this since the experimental and theoretical results show
the region of buckling to be in the neighborhood of the pole. For large
values of A, the outer boundary has very little effect on the behavior at
the pole. As A is reduced, the outer boundary moves closer to the pole
and appears to reduce the severity of the snap, until finally, when
A < 15, it disappears. However, the localized nonlinear effect is still
present and shows up as a decrease in slope of the load-displacement curve.

The final loads due to axisymmetric behavior for A=12 and
various values of A are given in Fig. 14. As by increases, and the load
covers more of the shell's surface, the load-displacement behavior
exhibited the softening behavior typical in Figs. 4 and 7.

b. Bifurcation Buckling

The final loads for asymmetric behavior for A=12 and various
values of A are presented in Fig. 14 with the results obtained by Fitch
and Budiansky. The load is given by equation (13) with ¢=.0002. The

critical modes were selected from Ref. 6. For A < 2.0 the final loads
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were obtained using a linear solution in the axisymmetric mode since
the nonlinear axisymmetric solution failed to converge for loads much
smaller than the bifurcation loads obtained by Fitch and Budiansky.
¢. Imperfection Sensitivity

Results for the imperfection sensitivity of the shell A=12
given in Ref. 6 show that for A > 5 the shell is imperfection sensitive,
but for A < 2 the load increases after bifurcation and hence, the shell
is insensitive. This latter feature is supported by the experimental
results given in Refs. 7 and 8 where shells were observed to transition
into the asymmetric mode shape without a noticeable loss of load carrying
capacity.

It was not possible to use the program to determine the
sensitivity for X < 2 since the solution failed to converge due to
strong nonlinear behavior in the axisymmetric mode at loads much lower

than the bifurcation loads

6As discussed in Section III.C., the use of a linear solution in the
axisymmetric mode eliminates the ability of the program to determine
sensitivity.
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V. TRUNCATED HEMISPHERE DESCRIPTION AND RESULTS

A. GEOMETRY .
Figure 15 shows the geometry of the truncated hemisphere. The values

of the parameters used to describe two different shells are as follows:

Shell A Shell B
Radii of curvature, Rs’ Ro = 120 in 151 in
Thickness, h = .24 in .10 in
Included angle, ¢0 = 23.3 deg 23.2 deg
Modulus of elasticity, E = 30x106 psi
Poisson's ratio, Vv = .3

B. LOAD DESCRIPTION
1. Axisymmetric
As shown in Fig. 15, an axisymmetric axial load Po/cos ﬁo was
applied to the top edge of the shell. For this loading condition, the
reaction load at the lower boundary is Po'
2. Asymmetric
Two types of asymmetric loads were used; one was a small pertur-
bation in the axial load 6Pocos(Ne)/cos ﬁo, and the other was a small
uniform pressure ed, cos (Ne), where . is given by equation (7). Since
the axial load was introduced as a boundary condition, and since the
program considered the boundary conditions to be the same in every mode,
some modifications had to be made to the program to allow a § different
from 1. The appropriate statements that allow a variable § are presented

in Appendix C.
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C. BOUNDARY CONDITIONS
The boundary conditions imposed on the shell at the top edge were

NS cos ﬂo - QS sin ﬂo =P

o (15a)

U sin ¢0 - W cos ﬁo =0 (15b)
V=0 (15¢)

8 =0 (15d)

s
where NS is the membrane force per unit length, and QS is the transverse
force per unit length.

At the reaction end the shell was clamped, and the boundary conditions

are given by equation (14).

D. PROCEDURES

A forty point finite difference net was used in all cases, and the
convergence criterion was .0l. The nonlinear axisymmetric behavior for
the two shells was first obtained. Both types of asymmetric loads were
then introduced, and the final loads, mode shapes and load-displacement
curves were obtained for a linear and a nonlinear solution in the axisym-
metric mode. The sensitivity of shell B was examined by varing both &

and ¢.

E. RESULTS

1. Axisymmetric Behavior

The linear and nonlinear parts of the radial displacements at the
final load are shown in Fig. 16 for shell A. The final displacement state
of shell B was similar. Figure 17 depicts the load-displacement behavior
for a station near the top of the shell where maximum stiffening occurred.
Since Fig. 16 shows that there are no softening nonlinearities, failure

of the solution to converge is attributed to the stiffening nonlinear
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behavior. The final nondimensional load PO/Eh was l.325x10-3 for shell
A and .600x10"> for shell B.

2., Bifurcation Buckling

a, Shell A

The theoretical results obtained for the bifurcation loads
versus mode number and the experimental buckling load given by Yao
[Ref. 9] are presented in Fig. 18. Yao's theoretical results are based
on a linear, membrane prebuckling assumption. Also shown in Fig. 18 are
the present results obtained for the final loads using a linear symmetric
analysis with an asymmetric load in the appropriate mode and &=.0001.
Figure 19 presents the buckling mode shape for N=40 and §=.0001, and
the mode shape assumed by Yao. The linear portion of the displacements
was negligible at all sta;ions along the meridian, and the requirements
for a bifurcation analysis are satisfied. Similar results were obtained
for N > 30.

For N < 30, the results for the final loads differ signifi-
cantly from the bifurcation loads predicted by Yao. Figure 20 shows the
modal displacements along the meridian at the final load for N=15 and
5=.0001. Examination of Fig. 20 reveals that the linear part of the
solution is larger than the nonlinear part, and that there is stiffening
in the region near the applied load. Hence, the solution does not satisfy
the conditions for a bifurcation analysis, and therefore, the final loads
obtained for the lower mode numbers do not represent a critical load
condition.

The values of the final loads were also obtained using a
nonlinear symmetric solution. PFigure 21 shows the nonlinear and linear

parts of the modal displacements at the final load for N=40 and 5=.0001.
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Note that a mode shape is emerging, but the conditions for bifurcation
analysis are only satisfied over that part of the shell where the linear
displacements are negligible. Furthermore, convergence failure could
not be definitely associated with either the asymmetric or the axisym-
metric behavior since the final load for axisymmetric nonlinear behavior
and the bifurcation load are approximately equal.

b. Shell B

The axisymmetric, nonlinear behavior of shell B did not
experience convergence failure until the load was much larger than the
minimum bifurcation load predicted by Yao. As a consequence, results
were obtained for the final loads using a linear and nonlinear symmetric
analysis with an asymmetric load in the appropriate mode and §=.0001.
The results are presented in Fig. 22 along with the theoretical bifur-
cation loads and experimental buckling load presented in Ref. 9.

Figure 23 shows the nonlinear part of the modal radial
displacements at the final load for N=70, ¢=.001, and a nonlinear
symmetric analysis. The linear part of the modal displacements were
negligible at all stations and the mode shape is essentially the same
as the mode shape for shell A shown in Fig. 19. Although the solution
was obtained using a nonlinear symmetric analysis, failure of the
solution to converge could definitely be associated with the asymmetric
behavior.

For N < 35 final loads were obtained below the bifurcation
loads predicted by Yao. As was the case for shell A, the solutions at
these lower mode numbers did not satisfy the conditions for a bifurcation

analysis.

43



/o YAO [Ref. 9]

.8 T
6 t———————————— —— ———
'\_ A A
Convergence Failure Due To Symmetric
Nonlinear Behavior
4 +
O Nonlinear Symmetric Analysis
2+ A& Linear Symmetric Analysis
Experimental Bucking Load [Ref. 9]
(Mode Number Not Given)
0 ] | L 1 ] | 1 i |
10 20 30 40 50 60 70 80

MODE NUMBER

Fig. 22 TFinal loads for asymmetric behavior of Shell B subjected
to an axial tension with small asymmetric load. 6 = ,000l



Nonlinear Symmetric
Analysis

Nonlinear
Part

Reaction End
| ISR S S S B :J;J_M¢l I N,

- =10 0] .10
20 470
'}

Fig. 23 Buckling, meridional mode shape, N=70,
of Shell B subjected to an axial tension
with small asymmetric pressure, ¢=.001

45



3. Imperfection Sensitivity

The sensitivity of shell A could not be examined since a linear
axisymmetric solution was required for the bifurcation analysis.

The semnsitivity of shell B for N=70 was examined using an asym-
metric axial load éPocos(Ne)/cos ¢0 and an asymmetric pressure load
eqocos(Ne). The variation of final load with respect to § and ¢ is
shown in Fig. 24. For the asymmetric axial load, the final load was
constant as the magnitude of § was increased. However, examination of
Fig. 21 reveals that the asymmetric axial load causes linear displace-
ments only in the region near the applied load. Outside this region the
linear displacements are effectively zero7. Therefore, the use of an
asymmetric axial load does not introduce linear displacements of any
consequence away from the region near the applied load. On the other
hand, the use of an asymmetric pressure load introduces linear displace-
ments over the entire region of the shell and is considered more appli-
cable for examining sensitivity.

Figure 25 shows the effect of the asymmetric pressure load upon
the final load and axisymmetric displacement at station twenty. The
behavior at all stations in the central region of the shell is exemplified
by the behavior at station twenty. For ¢ < .01, there was a small decrease
in the final load and a small increase in the final axisymmetric displace-
ment. However, for ¢=.10, there was a significant reduction in the final
load, and the final axisymmetric displacement is approximately the same
as that associated with ¢=.01. This type of behavior is similar to that

obtained for the spherical cap under uniform pressure.

7Since the net axial load in the asymmetric mode is zero, the linear modal
stresses become smeared as the distance from the load application is
increased. Thus, there is little or no asymmetric stress present at the
reaction end.
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Hutchinson [Ref. 10], in an analytical study of the initial
postbuckling of toroidal shells, suggested that the imperfection
sensitivity of Yao's truncated hemispheres should agree qualitatively
with the degree of sensitivity that he obtained for the simply sup;
ported hemispherical segments subjected to axial tension. Shells A and
B fall within the imperfection sensitive range predicted by Hutchinson.
A plot of the initial slope of the generalized load-deflection curve8,
as given in Ref. 10, for the perfect toroidal shell corresponding to

shell B is shown in Fig. 25.

8Hutchinson’s load-displacement plot is based on axial elongation. An
appropriate conversion was applied to his slope to account for differ-
ences in nondimensionalization.
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VI. CONCILUSIONS

A. FINAL LOADS AS BUCKLING LOADS

As a consequen;e of the method of solution used in the computer pro-
gram, the solution may fail to converge for both softening and stiffening
nonlinearities. Thus, a careful examination of the solution should be
made before proclaiming a final load to be a buckling load. For axisym-
metric snap buckling, the load-displacement curves should indicate that
a region of nearly zero slope has been reached. For bifurcation buckling
loads, the above should hold true for the modal displacements, and the
linear part of the modal displacements must be negligible compared to
both the nonlinear part of the modal displacenients and the axisymmetric
displacements.

There are instances when it's not completely clear why the solution
fails to converge. For example, consider the results obtained for very
small finite area loads on a clamped spherical cap. For A > 15, the
experimental results indicate that an axisymmetric snap occurs at an
approximate value of load for which the computer solution failed to
converge. However, for A < 15 the solution experienced convergence
problems at loads where the slope changed significantly, but no snap
buckling occurred. Archer [Ref. 11] obtained similar theoretical results
for simply supported caps using the pseudo load approach. Mescall [Ref.
12] notes that Archer'’s final loads were loads for which the numerical
procedure could not converge and were not due to the existence of a
maximum on the load-displacement curve. Throughout this study an attempt

has been made to clarify this point. In those cases where the results
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did not indicate the existence of a maximum on the load-displacement

curve, the final loads were not classified as buckling loads.

B. AXISYMMETRIC SNAP BUCKLING

1. Spherical Cap

The results obtained for the axisymmetric snap buckling loads of
the spherical cap under uniform pressure compare favorably with previ-
ously published theoretical results. Since the load-displacement curve
shows the approaching region of zero slope associated with the existence
of a maximum and snap buckling,and since convergence failure can definitely
be attributed to this softening nonlinear behavior, the classification of
the final loads as snap buckling loads is considered justified.

The case of small area loading, approaching a point load, gave
results for high rise caps that compare favorably with experimental
results. The load-displacement behavior indicated that snap buckling
was iminent. At smaller values of A, the behavior is not characterized
by indications that a maximum exists on the load-displacement curve, and
failure of the solution to converge is not associated with snap buckling,
but with moderate changes in stiffness of the shell.

As the area of loading is increased, the behavior is again
characterized by the type of nonlinear behavior indicative of snap
buckling and the final loads obtained are considered to be snap buckling
loads.

2. Truncated Hemisphere

Final loads were obtained for the axisymmetric behavior of the
truncated hemisphere under axial tension. However, these loads do not
represent critical loads, but are the last value of the load for which
a solution could be obtained. Failure of the solution to converge is

attributed to stiffening nonlinearities.
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C. BIFURCATION BUCKLING

The results of the investigation of asymmetric behavior under nearly
axisymmetric load indicate that the program can be used to predict
bifurcation buckling loads. 1In fact, the results obtained for the
bifurcation loads using the asymptotic procedure are better than was
anticipated, since an extremely small disturbance in the mode is all
that is required to trigger nonlinear modal displacements that are much
larger than the linear modal displacements as the load approaches a
critical value.

1. Spherical Cap

The bifurcation loads obtained for the spherical cap for all
loading conditions are in very good agreement with previously published
theoretical results. For an asymmetric load with a maximum magnitude of
.01% to .05% of the axisymmetric load, the linear asymmetric displacements
are negligible compared to the axisymmetric displacements and the nonlineas
asymmetric displacements are negligible until the applied load reaches a
value within 95% of the final load. The buckling mode shapes compare
favorably with previous results.

2. Truncated Hemisphere

The bifurcation loads obtained for the truncated hemisphere are
in good agreement with the previously published theoretical results, and
the critical mode numbers are in excellent agreement. Several final loads
were obtained for low mode numbers that do not agree with the previous

results, but these loads are easily eliminated as bifurcation loads.

D, IMPERFECTION SENSITIVITY
The sensitivity of a given shell and loading condition to imperfection:

is a result of the nature of the modal coupling between the axisymmetric
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mode and the asymmetric modes. When the failure of the solution to
converge can definitely be attributed to softening nonlinearities in
the asymmetric mode, the computer program can be used to determine the
coupling effects and the sensitivity can be estimated.

1. Spherical Cap Under Uniform Pressure

For the pressure loaded cap with A=8, reductions in the final
load with increasing magnitude of imperfections are accompanied by
reductions in the final value of the axisymmetric displacements. Further-
more, the failure of the solution to converge is due to softening non-
linearities in the asymmetric mode. Therefore, this pressure loaded cap
shows a strong sensitivity to imperfections. This conclusion is in
agreement with the previous theoretical analysis given in Ref. 6.

2. Truncated Hemisphere Under Axial Tension

The axisymmetric behavior of the truncated hemisphere under axial
tension shows stiffening over the entire region of the shell, and the
solution encounters convergence problems due to this stiffening. Never-

theless, the final load for shell B, subjected to a very small asymmetric

load in the critical mode, is a bifurcation load, and a sensitivity analysis

of this shell is possible. For increasing values of asymmetric axial load
there is no change in the final load. This is due to the fact that the
imperfections in the axial load generate displacements and stresses only
in the upper region of the shell. In this region, the asymmetric dis-
placements have negligible effect upon the axisymmetric displacements,

and the shell appears to be imperfection insensitive. On the other hand,
an asymmetric pressure load causes displacements over the entire shell.
For very small values of ¢, less than .01, the asymmetric mode does have

some effect on the axisymmetric mode; the final load is slightly reduced
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but the final displacements in the axisymmetric mode are increased.
Thus, the shell is sensitive to small imperfections, but the behavior
differs from that of the spherical cap. For larger imperfections the
asymmetric mode has a pronounced effect upon the axisymmetric behavior
in the central region of the shell, and there is a significant reduction
in the value of the final load with virtually no change in the final
value of the axisymmetric displacements. This type of behavior is
similar to that of the spherical cap.

Hutchinson [Ref. 10] suggested that the imperfection sensitivity
of Yao's shells should agree qualitatively with the degree of imperfection
sensitivity he obtained for simply supported hemispherical segments.
Reference 13 contains a summary of the results of Hutchinson's study and
a discussion on the postbuckling coefficient used to determine sensitivity.
The imperfection sensitivity of circular cylindrical shells under axial
compression is used as a calibration for the significance of the post-
buckling coefficient. Based on Hutchinson's prediction, shell B is not
as sensitive to imperfections as the cylinder or the spherical shell,
but it does fall in a region where a significant reduction in the buckling
load may occur.

The present results for small ¢ are in agreement with Hutchinson's
prediction. However, for larger ¢ the results indicate an apparent change
in the nature of the sensitivity and the behavior resembles that of the
spherical cap. Since the experimental buckling loads of shells A and B
are about one half of the theoretical bifurcation loads, which is common
for pressure loaded spherical caps, this analysis appears to offer a
reasonable explanation for the large discrepancy between the bifurcation

loads and the experimental buckling loads.
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APPENDIX A

USER PREPARED SUBROUTINES
The following are user prepared subroutines necessary to describe
the stiffness, geometry and loads for the various shells examined in
this study. Certain input parameters were required before calculation
of any quantities in the subroutines. These values were input into the
main part of the program.
KMAX - total number of meridional stations

MNMAX - the number of terms used in the expansion of the
applied load

NU - Poisson's ratio (V)

EIAST - reference modulus of elasticity (E )
TKN - reference thickness (h ) °
CHAR - characteristic length 0(a)

SIGO - reference stress (oo)

A, STIFFNESS

The stiffness quantities necessary in the program are calculated at
each meridional station (K) by subroutine BDB. The nondimensional form
of the Fortran variables for a homogeneous, isotropic, constant thickness

shell are as follows:

fE o L (E=E,h=nh)
B = = =E, h-=
tho(l-\)z) (1-v%) ° °
frie

D = —mm——— =
3 2
tho (1-v7)

dB _
ds

DB

db _
ds

DD
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Since all the shells examined were assumed to be homogeneous,
isotropic and constant thickness, only one subroutine was required.

SUBROUTINE BDB(X,B,DB,D,DD)
REAL NU

COMMON
1/B132/TKN,EIAST,CHAR,SIGO/BL15
2/NU,U1(10),V1(10),W1(10),V2(10),U2(10),W2(10),U3(10),
3v3(10),W3(10)

B=1./(1l.-NU**2)

D=B/12.

DB=0.

DD=0.

RETURN

END

B. GEOMETRY
The geometric quantities necessary in describing the shells are
defined in subroutine GEOM. The following are the nondimensional

Fortran variables required at each meridional station (K).

=-S5
T (KMAX-1)a

R(E) = [i] K

o - [#14]

DEL

K

——

<]
St

S
DEOMX (K) = S— Fg_] X

1. Spherical Cap

Prior to calling subroutine GEOM, certain quantities were input

or calculated in MAIN and are as follows:
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FCTZ = A (input)
CHAR = R_ = R_ (input)
HIR = H (calculated)
FCTL = S (calculated)
RL =r¢ (calculated)

[e]

The necessary statements in MAIN required for calculating the desired
quantities are as follows:

HTR=TKN* (FCTZ*%2)/SQRT (58.%(1.-NU*%2))
RI~SQRT ( (2 .*CHAR*HTR) - (HTR**2))
FCTL=CHAR*ARSIN(RL/CHAR)

Subroutine GEOM is as follows:

SUBROUTINE GEOM
COMMON
1/IBIA/KMAX ,KL
0/BL8/R(200) ,GAM(200) ,0MT (200)
3/BL11/0MX1(200),PHEE,TO,T2
4/BL17/DEL
4/BL20/DEOMX (200)
6/B132/TKN,ELAST,CHAR,SIGO
RK=KMAX -1
DEL~=(FCTL/RK) /CHAR
DO 4 K=2 ,KMAX
RK=K
THET=(RK-1.)*DEL
R(K)=SIN(THET)
GAM (K)=COS (THET) /R(K)
OMT (K)=1.
OMXI (K)=1.
4 DEOMX (K)=0.
R(1)=0.
GAM(1)=0.
OMT(1)=1.
OMXI (1)=1.
DEOMX (1)=0.
RETURN
END

2. Truncated Hemisphere

The input quantities required in MAIN are as follows:

PHIO = § (input in radians)
CHAR = R® = R (input)

Subroutine GEOM is as follows:
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SUBROUTINE GEGM
(COMMON STATEMENTS)

RK=KMAX-1
DEI=PHIO/RK
DO 13 E=1,KMAX
RK=K-1
BETA=PHIO- (RK*DEL)
R(K)=1.-(1.-COS(BETA))
GAM(K)=SIN(BETA)/R(K)
OMT (K)=COS (BETA) /R (K)
OMXI(K)=1.

13 DEOMX (K)=0.
RETURN
END

C. LOAD

The axial loading case is covered in Appendix C and the pressure
loading case is described in the following.

The reference pressure loads for each coefficient used in the cosine
expansion of the load, at each meridional station, were calculated or
defined in subroutine PLOAD. The following are the nondimensional Fortran

variables required

NN(I) = n
aq’
PR(I) = =L
[e 6]

For the shells examined, the following reference values were used and

were input or calculated in MAIN.

MODl - the first asymmetric mode number used in load
description (input)

CHAR = a =R_=R (input)

TKN = h = h° ° (input)

SIGO = 02= q, (calculated)

The statement required to calculate SIGO is

SIGO=(2.*ELAST*TKN)/ (CHAR*SQRT (3.%(1.-NU%*2)))
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1. Spherical Cap

The load description for the spherical cap, in all cases,
required a symmetric pressure load and, for the majority of runs, one
or more modal pressure loads. The symmetric mode (n=0) was always
NN(1) and PR(1) was equal to -1l. corresponding to an external pressure.
A Fortran variable, FCTR, was an input parameter determining the number
of stations loaded and was equal to KMAX for the uniform load. The
magnitude of the asymmetric load was governed by the input variable EPSL,
The subroutine PLOAD for the spherical cap is as follows:

SUBROUTINE PLOAD(K)
COMMON/BL32/TKN,EIAST,CHAR,SIGO/IB12/NN(10) ,MNINIT
8/BL6/Z (4,220) ,SOE,OSE ,ALOAD/ IBL1/MNMAX
5/BL3/PR(10),PX(10),PT(10)/IBLA)KMAX ,KL
6/BL8/R(200) ,GAM(200) ,0MT (200)/BIL2/EPSIL,MOD1, LINA
M=MOD1-2
DO 10 I=1,MNMAX
10 NN(I)=Mt+I
NN(1)=0
IF(X.GT.FCTR) GO TO 39
DO 11 I=1,MNMAX
11 PR(I)=EPSL
PR(1)=-1.
GO TO 40
39 DO 12 I=1,MNMAX
12 PR(I)=0.
40 RETURN
END

2. Truncated Hemisphere

For the truncated hemisphere the only pressure load used was an
asymmetric load in one mode, and PR(l) was always equal to zero. The
Fortran parameter EPSL was used to govern the magnitude of the asymmetric
axial load and the magnitude of the asymmetric pressure load was specified
within subroutine PLOAD. If an asymmetric axial load was used then PR(2)
was set equal to zero. Subroutine PLOAD for the truncated hemisphere is

as follows:
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SUBROUTINE PLOAD (K)
(COMMON STATEMENTS)

NN (1)=0
NN(2)=MOD1
PR(1)=0.
PR(2)=-.001
RETURN

END
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APPENDIX B

ADDITIONS TO THE PROGRAM FOR LINEAR SYMMETRIC SOLUTION
The following is a listing of the statements and their location
within the various sections of the program that allowed the nonlinear

terms in the symmetric mode to be by-passed and the linear solution

obtained.
\j’ MAIN
1\ (COMMON BLOCKS)

031
COMMON/BIL2/EPSL,MOD1,LINA

w 032

1\ READ(5, 102)NU,SIGO,EIAST, TKN,CHAR

038

C SET LINA=1 FOR LINEAR PREBUCKLING

LINA=1
J/ READ (5. 102) DELOAD,EPS 039
’tlo WRITE(6,201) NO 051

IF (LINA.EQ.1)WRITE(6,118)
118 FORMAT (48X, 'LINEAR PREBUCKLING'//)
J/ WRITE(6,100) TITLE 052
\1/ SUBROUTINE XANDZ 531
1\ (COMMON BLOCKS) 564

COMMON/BIL2/EPSL,MOD1,LINA
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DO 8 M=1,MNMAX
CALL TLOAD(1)

IF(M.EQ.1.AND.LINA.EQ.1) GO TO 7

FFS (L,M)=-TT (M) *ALOAD+OSE*(BX1 (M) ....ETC. ..
FFS(2 ,M)=0SE*(Bl #*D1  *BSTL(M....ETC...
FFS (3 ,M)=1AM2*GAM1*D 1 #MT (M) *ALOAD- . . .ETC. ..

GO TO 8

FFS (1,M)=0.
FFS (2 ,M)=0.
FFS (3,M)=0.

—=

FFS (4 ,M)=0.

DO 14 M=1,MNMAX
CALL TLOAD (KMAX)

IF(M.EQ.1.AND.LINA.EQ.1) TO TO 11

FLS (1)=-TT (M) *A LOAD+OSE*(BX3 (M) . . . . . ETC. ..
FIS(2)= OSE*(BL*D1#BXT3 (M)+EX3..... ETC. .
FLS (3)=TAM2*GAML*D1*MT (M)*ALOAD. . . .. ETC. .

11

GO TO 13
F1S(1)=0.
FLS(2)=0.
FLS (3)=0.

13

IK=KI+KMAX* (M- 1)

SUBROUTINE FORCE (K)

(COMMON BLOCKS)

COMMON/BIL2/EPSL,MOD1,LINA

[
!

EX2T=EX2 (M)
ET2T=ET2 (M)

7

IF(LINA.EQ.1.AND.M.EQ.1) TO TO 31
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622
623

624

625
626

627

650

651
652
653

654

960

987

988

066
067



068

L GEE (1)=GEE (1) *OSE* (BS* (DBX-+DBE+GA%. . . .. ETC. ..
1‘ 2 (EXT2T+ETT2T) ) ) *IDEL 076
31 IF(K.GT.1) GO TO 10
J' DO 20 1=1,%4 078
SUBROUTINE OUTPUT (IMODE) . 445
1\ (COMMON BILOCKS) 473
COMMON/BIL2/EPSL,MOD1,LINA
J( 474
= *,
t TTS=TT (MN)*ALOAD 521
IF (MN.EQ.1.AND.LINA.EQ.1) GO TO 13
{, EX=(U3 (MN) -UL (MN) )*TDLI +OX*W2(MN) + ..... ETC . 222
A 1+ ENL*SOE*BXT3 (MN)) 525
GO TO 14
13 EX=(U3 (MN)-UL (MN) ) *TDLI+OX*W2 (MN)
ET=ENR*V2 (MN)+GAXU2 (MN)+0T*W2 (MN)
EXT=. 5%( (V3 (MN) -V L (MN) ) *TDLI-ENR*2 (MN) -GA*V2 (MN) )
14 KT=ENR*PHIT (MN)-+GA*PHIX (MN) 526
\’L KXT=. 5% (ENR* (-PHIX (MN) ~GA™W2 OI) + (W3..... grc... -2/
T CALL TLOAD(K) 851
= *,
TTS=TT (MN)*ALOAD 852
IF (MN.EQ.1.AND.LINA.EQ.1) GO TO 15
{ EX=(U3 (MN) -U L(MN) *IDLI +OX*W2 (MN)..... ETC. .. 853
1\ 1+ ENL*SOE*BXT3 (MN)) 856
GO TO 16
15 EX=(U3 (MN)~U1 (MN) ) *IDLI+O0X*W2 (MN)
ET=ENR*V2 (MN)-+GA*U2 (MN)-+OT*W2 (MN)
EXT=. 5%( (V3 (MN)-V1(MN))*TDLI - ENR*U2 (MN)-GA*V2 (MN))
16 KT=ENR*PHIT (MN)-+GA*PHIX (MN) 857
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{ RXT=. 5 (ENR* (OPHIX (MN) *GA™WZ (MN)+ (W3 O - - . - wic... 88
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APPENDIX C

ADDITIONS TO THE PROGRAM FOR ASYMMETRIC AXIAL LOAD

In order to adjust the magnitude of the asymmetric axial load,
additional logic was incorporated in subroutines XANDZ and FORCE.
The axial loads are entered as boundary conditions and are described
by the Fortran variables EL1S and ELLS. A Fortran variable EPSL was
uséd to determine the magnitude of the asymmetric load and is contained
in the COMMON block BIL2, which was introduced in Appendix B. The sym-~
metric part of the load was always taken as the first mode, described

by NN(1)=0. The necessary statements required are as follows:

\L SUBROUTINE XANDZ 531
DO 14 I=1,4 657
SUMZ=0. 658

’t DO 15 J=1,4 659

IF(M.EQ.2.AND.I.EQ.1) ELIS(J)=ELIS(J)*EPSL

l' 15 SUMZ=SUMZ+ZFIM(I,J,M)*..... ETC... 660
SUBROUTINE FORCE (K) 960
1\ DO 21 J=1,4 081

IF(M.EQ.2.AND.I.EQ.1) ELIS(J)=EL1S(J)*EPSL

l/ 21 SUMX=SUMX+DL(I,J,M)*EL1S.....ETC... 082
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